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Abstract 

Combinatorial formulas for Kekulé structure counts (K) of a class of benzenoids 
referred to as "flounders" are derived. They represent a generalization of the 
previously studied "pentagon-shaped" benzenoids. A special case of the K formula 
reproduces the well-known Catalan numbers. 

1. I n t r o d u c t i o n  

Many interesting combinatorial problems have been encountered in the studies 
of Kekulé structure counts of benzenoid systems; cf., e.g., the recent book by Cyvin 
and Gutman [1 ] with the bibliography therein, and a few additional references [ 2 - 6 ] .  

In the present work we define some new classes of benzenoids, in continuation 
of the previous works [1 ]. Combinatorial K formulas are derived, where K designates 
the Kekulé structure counts. We point out explicitly the connections with some 
classical mathematical problems. 

The importance of the Fibonacci numbers in the enumeration of the Kekulé 
structures is well known [ 1 , 7 - 1 1 ] .  Here, we shall also identify the K numbers for 
a certain class of benzenoids with the Catalan numbers. 

*-Part VI in the series Pentagon-Shaped Benzenoids. For patts I-V, see refs. [12-16]. 
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2. Def in i t i ons  o f  b e n z e n o i d  classes 

In a series of papers [ 1 2 - 1 6 ] ,  the K numbers of some classes of "pentagon- 
shaped" benzenoids (of simply "pentagons") were treated. The studies include 
"triangle-shaped" benzenoids T [14] as special cases of the pentagons D. The 
pentagonal shape of the so-called prolate and oblate pentagons among straight t-tier 
strips [1,17] is fairly obvious. Through further generalizations [1,15] it is obscured, 
but nevertheless the name "pentagon" was retained together with the symbol D. All 
classes defined in the present work belong to D, the pentagons in the generalized 
sense. The corresponding special cases identified by the symbol T are considered in 
particular. These are generalizations of the triangle-shaped benzenoids studied 
previously, but which no longer have a triangular shape in general. 

In conclusion, it does not seem appropriäte to push the designations "pentagon" 
and "triangle" further. We have therefore invented the fancy name "flounders" for 
the benzenoids of the classes defined in the follcrwing. 

A benzenoid T(k, m;p) is defined as a parallelogram L(k, m) from which a 
prolate triangle Ti(p) is deleted, as shown in fig. 1. It belongs to the flounders. 

T(k,m; p) 
Fig. 1. Definition of the benzenoid (flounder) T(k, ra;p), the 
white part of the figure. The depicted example is T(5,7; 3). 
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The systems T(k, ra;p) and T(m, k;p) are isomorphic. The three types of  
triangles [1] are special cases of  flounders: 

Ti (m)  - T(m, m;m - 1) prolate triangle; 

T(m, m + 1) - T(m, m + 1 ; m - 1) problate triangle; 

TJ(m) = T(m, m; m - 2) oblate triangle. 

Normally,  one has 0 < p < min(m, 17). The case of  p = 1 is a parallelogram 
without  corner [1]:  

La(k,  m) - T(k,  m; 1). 

Fur thermore,  there is no difficulty in extending the range of  p to zero. In this case, 
the flounder simply degenerates to the corresponding parallelogram: 

L(k,  m)  -- T(k,  m; 0). 

In the following definition of  a class of  flounders,  it is expedient to also define: 

T ( k , m ; t ) =  L ( k , m )  when t <  0. 

A class of  flounders T(k,  ra;p)may be defined so thät k - p  and m - p  are 
constant for all members.  In the example of  fig. 1, one has k - p = 2 and m - p = 4. 
In fig. 2, the members of  the corresponding class with decreasing p values are depicted, 
right down to the utterly degenerate case of  "no hexagons",  where k = 0 and p = - 2 .  

T(4,6; 2) T(3,5; I) T(2,4; 0) T(I,3; -i) T(0,2; -2) 

Fig.  2.  A class o f  b e n z e n o i d s  ( f l o u n d e r s )  T ( I c ,  r a ; p ) ,  w h e r e  k - p 

and  m - p are  c o n s t a n t .  In  th i s  e x a m p l e ,  k - p = 2,  m - p = 4.  

A flounder T(k, m;p)  may also be taken as a starting point o f  a class of  
regular (k + m - 1)-tier strips [1] .  A member  of  such a class, also called a flounder,  
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n 

n 

I)(k,m,n; p) 
Fig. 3. Definition of the benzenoid (flounder) D (k. m, n; p). 

The depicted example: D(5,7,3; 3). 

is by definition a pentagon (although not always pentagon-shaped) and will therefore 
be identified by the symbol D(k ,  m, n ;p) ;  see fig. 3 for a precise definition of the 
parameters. One has: 

T(k, ra;p) - D(k, m, 1;p). 

below: 
The three types of pentagons [1] are special cases of flounders as specified 

Dl(m, n) =- D(m,  m, n ; m  - 1)prolate pentagon; 

D(m, m + 1,n)  -= D(m,  m + 1 , n ; m  - 1) problate pentagon; 

Di(m,  n) =- D(m, m, n; m - 2) oblate pentagon. 



R. To~i6, S.J. Cyvin, Enumeration of Kekulé structures 397 

The cases o f p  = 1 and p = 0 area hexagon without corner and a hexagon [1], 
respectively : 

Oa(k, m, n) ~ D(k, m, n; 1); 

O(k, m, n) = D(k, m, n; 0). 

In consistency with the above considerations for T(k, ra;p), we also define: 

D(k,m,n;t)  = O(k,m,n) when t <  O. 

3. Recurrence relations for T flounders 

For the flounders of fig. 1, which are of the T type, one finds straightforwardly 
the following recurrence relations for the K numbers (Kekulé structure counts)by 
means of the method of fragmentation [1,18] : 

K{T(k, ra;p)} 

= K / T ( k -  1 , r a ; p -  1 ) } + K { T ( k , m -  1;p)} 

= K I T ( k , m -  1 ; p - 1 ) } + K { T ( k -  1 , ra ;p)} .  (1) 

The special case of p ~< 0 gives the long known recurrence relation for parallelograms 
due to Randid [18] : 

KIL(k, m)} = K / L ( k  - 1,m)} + K{L(k, m - 1)}. (2) 

4. Expl i c i t  formula for T flounders 

A combinatorial formula for the K numbers of T-type flounders is deduced 
in the following. 

THEOREM 

l~oof 

t l )  (3, 

There is exactly one peak u and exacüy one valley v in T(k, ra;p) when it is 
posed as in fig. 1. The K number is equal to the number of monotonic paths from 
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t i  

v 
Fig. 4. A monotonic path in the flounder of fig. 1, and its labeling. 

v to u [7] ; cf. the J o h n - S a c h s  theorem [1 ,19] ,  of  which the present case pertains to 
a simple specialization. Consider such a path. Label each non-vertical edge of  that 
path by 1 if it is going upwards to the right and by 0 if it is going upwards to the left. 
Vertical edges may be ignored. An example is shown in fig. 4. In this way,  a bijection 
is established between all monotonic  paths from v to u and all the words w of length 
k + m over the alphabet L, {0, 1}, w E {0, 1 }k + m satisfying the following conditions: 

(i) w contains exactly k unities and exactly m zeros; 

(ii) for each prefix r of  the word w (w = rq) ,  l l ( r )  - lo(r) <~ a = k - p ,  where 
11 ( r )  and Io(r) denote the number  of  unities and zeros in r, respectively. 

It is known [20,21] that the number of  words w as specified above is 

k+m) 
m \ k -  a - 1 ' 

i.e. 
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(~:m) (;::) 
Hence follows the statement (3). [] 

5. Some special cases of equation (3) 

When p = k -  1, we obtain a trapeze as shown in fig. 5. The pertinent K 
formula reads 

K{T(k, m ;k  - 1)} = - . (4) 
m \ k  - 2 /  

, C - 1  

T(k,m; k-l) 
Fig. 5. The trapeze (special flounder) T(4,6; 3). 

The problate triangle [1] (see also above) is a typical trapeze. In this case, one has 

(2n~n+ 1 ) ( 2 m  + 1'] 
K { T ( m , m + l ; m - 1 ) } =  - \ m - 2 , / "  (s) 
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By elementary computations, it is verified that this formula is equivalent to the 
previously given form [1 ] ,  which was derived in a different way, viz. 

K{T(m,m +1)} - m + 3  (6) 

Especially interesting is the case of  k = m and p = m - 1, which represents 
the prolate triangles [ t]  (see also above). From eq. (3) it is found 

(2m~ _ ( 2m ~) 
K { T ( m , m , m  - I)} = \ m  ] \ m  - 2 / '  (7) 

which is consistent with [1 ].  Hence, 

These K numbers form a series (1 ,2 ,5 ,14,42,132,429,1430,4862,16796 . . . .  ), 
which occurs very often in combinatorial counting problems. Leonhard Euler (1707-  
1783) discovered this series for counting triangulations. Nevertheless, it is named 
after Eugene Charles Catalan (1814-1894) ,  who re-discovered the same series in 
connection with the problem: in how many ways can a product be parenthesized? 
Joseph Louis Francois Bertrand (1822-1900)solved the equivalent ballot problem. 
The history of that problem and some of its generalizations can be found in [20,21]. 
The Catalan numbers are usually written 

, 
Cn = n + l  \ n /  (9) 

Hence, 

K{Ti(m)  } = Cm + 1" (10) 
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